Author Archives: Jose Nunez

IMG_20170216_190038

Intel Realsense Robotic Kit con Upboard + ROS

17 Feb , 2017,
Jose Nunez
, , , , ,
No Comments

IMG_20170216_190038Recientemente publicamos un primer artículo sobre el kit de robótica de Intel que trae una cámara Real Sense y un Upboard.

Aunque esta segunda entrega es bastante corta, esperamos que abra las perspectivas de nuestros lectores sobre lo que se puede llegar a hacer con uno de estos kits y los sistemas de robótica ROS y las facilidades que tiene para el manejo de cámaras Real Sense.

Paso 1 (30 min)

Comenzaremos diciendo que instalar Ubuntu y ROS en el Upboard es una tarea súperfacil siguiendo las instrucciones en este enlace:

https://software.intel.com/realsense/robotic-devkit-quickstart

Esto incluye

  1. Una revisión de materiales incluidos en el kit
    (!) Van a necesitar un cable HDMI estándar para conectar el video del UP Board a un monitor, un teclado, un ratón y un adaptador WIFI USB.
  2. La descarga de Ubuntu 16.04.1 LTS
    (!) Hoy (FEB18) gracias a las pruebas que está haciendo el profesor Tomás de Camino, vimos que ya la versión de Ubuntu 16.04.1 no está disponible en el enlace oficial que trae la guía de quick start de Intel, sino que fue reemplazada por la 16.04.2. Aunque en la buena teoría deben funcionar igual, en caso de experimientar algun problema con el setup acá les dejamos el enlace oficial a esa versión: 
    http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso
  3. La creación de un USB Stick de instalación
  4. La instalación del Ubuntu en el UP Board
  5. La actualización del sistema operativo incluyendo el KERNEL de linux optimizado para el Upboard
    (!) En este paso puede que se necesite configurar los servidores APT de Ubuntu para que use los servidores en Estados Unidos (no en Costa Rica) ya que en CR no están los paquetes de ROS. Para esto se abre el menú de búsqueda de Ubuntu y se digita “Software Updates” y en la casilla “Download From” se selecciona “Server from United States”image
  6. La actualización del software de Real Sense
  7. La instalación del sistema ROS en su versión Kinetic
    (!) ROS es un “meta-sistema operativo” de código abierto para robots, desarrollado por la fundación de robótica de código abierto. Para aprender más sobre ROS pueden seguir este enlace http://wiki.ros.org/ROS/Introduction
  8. Ejecución de un “Nodelet” de ROS para la cámara Realsense R200
  9. La ejecución del programa “RVIZ” para visualización 3D
  10. ¡a celebrar carajo!

Si, eso es todo por ahora.

69c570f4-7821-42da-a8b7-c0d23bf1b202

Intel UPBoard y el kit de robótica Real Sense

16 Feb , 2017,
Jose Nunez
, , , , , ,
No Comments

69c570f4-7821-42da-a8b7-c0d23bf1b202Esta semana nuestra investigación dio un giro inesperado al encontrarnos por primera vez con una pequeña maravilla que desconocíamos: el kit de robótica Real Sense de Intel, que está basado en un dispositivo (diríamos “compentencia” del Raspberry PI) denominado UP Board.

[Actualización 2/20/2017]
El UP Board es un dispositivo fabricado por la empresa AAEON que usa tecnología Intel y está optimizado para las cámaras Real Sense de Intel.

Afortunadamente pudimos conseguir uno de estos kits en la tienda de Intel antes de que se agotaran. Esperamos que pronto estén de vuelta.

El kit que se vende por aprox. $350 más gastos de envío e impuestos, contiene una tarjeta Up Board que prácitcamente del mismo tamaño que una Raspberry PI 3, con 32GB de storage eMMC, 4 GB de memoria RAM de alta velocidad y un procesador Intel Atom de 4 núcleos 1.92 GHz y GPIO de 40 pines y fuente de poder (5V 4A). (Especificación completa)

Siendo que la cámara Real Sense se consigue por $170, la tarjeta UP Board con 4GB RAM, 32GB Storage, nos sale costando aproximadamente $180, más un dongle wifi que necesitamos para conectarlo a Internet ($20)

Pero no nos confundamos; pusimos “competencia” entre comillas por que ¡esta cosa realmente vuela! Pienso que el precio está justificado por el desempeño que presenta y la facilidad con que lo pudimos poner en operación.

Viene optimizado y preparado para correr Ubuntu Linux (tal cual se descarga del sitio de Cannonical), trae un USB3.0  optimizado para la cámara Real Sense R200  que conforma el kit y otros cuatro puertos USB 2.0 más.

Mi experiencia echando a andar este pequeño monstruo fue realmente placentera. Fue cuestión de preparar un USB Stick con una imagen de Ubuntu, bootearlo en el dispositivo e instalar.

Luego de eso instalamos algunas librerías muy interesantes que estaremos detallando pronto en nuestra siguiente entrega, tales como ROS (robot operating system), OpenCV Apps, Optimizaciones del Kernel de Linux para el upboard, etc.

A este punto pudimos instalar todas las librerías necesarias, e incluso instalar y correr Netbeans 8.2 sin ningun impacto en el desempeño del dispositivo.

 

 

foto1s

Cámara de Seguridad Diferencial RASPBERRY PI 3 – Parte I

3 Feb , 2017,
Jose Nunez
, , ,
No Comments

En este pequeño tutorial vamos a explorar la forma de crear una cámara de seguridad diferencial. Es decir una cámara que reacciona al comparar matemáticamente dos fotografías constantemente.

Suena complejo, pero gracias a nuestros amigos de ImageMagick en Linux, termina siendo realmente sencillo.

Básicamente queremos tomar una foto como base, luego tomar otra, si esta segunda foto es diferente de la anterior, entonces algo se movió así que guardamos esa segunda foto y reportamos el hallazgo, usamos esta ultima foto como base y repetimos el proceso.

Para lograr esto en una Raspberry PI 3 (desde la cual escribo y programo hoy) vamos a utilizar dos utilitarios:

  1. raspistill: Utilitario de Raspbian que adquiere una foto de una cámara compatible con el puerto para cámara del Raspberry PI.
  2. compare: Utilitario del paquete ImageMagick de Linux que compara dos fotografías para determinar la diferencia matemática entre ellas.

(!) Antes de instalar paquetes adicionales, es importante recordar mantener al dia el sistema operativo mediante los comandos sudo apt update seguido de  sudo apt upgrade

Para instalar imagemagick usaremos: sudo apt install imagemagick

Para tomar una fotografía hay que tener en cuenta lo siguiente:

  1. Si no está habilitada, es necesario habilitar la cámara del Raspberry PI. Para esto se puede usar el Menu de Raspbian > Preferences > Raspberry PI Configuration
    Una vez en la pantalla de configuración, buscamos la pestaña “Interfaces” y nos aseguramos de que la cámara esté en posición “Enabled” y hacemos clic en “OK”
    (!) Es probable que necesite rebootear el Raspberry PI si la cámara estaba deshabilitada.
  2. El comando básico para tomar una foto es este: raspistill -o test.jpeg
  3. Una variante que usaremos más adelante para tomar una foto sin una pantalla de preview es esta: raspistill -nopreview -o test.jpeg

Para comparar dos fotografías usamos el siguiente comando: compare -metric RMSE foto1.jpeg foto2.jpeg NULL:

Así las cosas, el siguiente ejercicio tomaremos dos fotos, y las compararemos.

  1. Tomamos una primera foto: raspistill -o foto1.jpeg
  2. Sin variar la cámara ni la escena, tomamos una segunda foto: raspistill -o foto2.jpeg
  3. Variamos la escena, moviendo un objeto ligermanete y tomamos una tercera foto: raspistill -o foto3.jpeg
  4. Comparamos el resultado de una misma escena: compare -metric RMSE foto1.jpeg foto2.jpeg NULL:
    Esto nos devuelve un valor parecido a este : "2433.9 (0.0371389)".
  5. Ahora comparamos el resultado de la escena movida: compare -metric RMSE foto1.jpeg foto2.jpeg NULL:
    En este caso vemos que la diferencia matemática aumenta: "4396.62 (0.067088)"

Abajo dejo las fotos 1,2 y 3 en orden a manera de ilustración.

En nuestra próxima entrega vamos a estudiar la forma de automatizar este proceso con nodejs.

FIN!


Foto 1 – Base

foto1s


Foto 2 – Misma escena

foto2s


Foto 3 – Escena con variaciones

foto3s

 

 

 

 

IMG_20170120_183547

Intel Edison – Análisis de Datos con Lenguaje “R” mediante UBILINUX (nota rápida)

21 Ene , 2017,
Jose Nunez
, , , , , , , , , , , ,
No Comments

IMG_20170120_183547Durante 2016 hicimos varios proyectos interesantes con Intel Edison.

Uno de ellos fue un proyecto de colaboración con nuestros colegas de UNED en la investigación de sonido ambiente mediante tecnologías IoT.

Una de las cosas más interesantes que pudimos experimentar fue esta idea de hacer análisis de grabaciones de sonido mediante la plataforma Intel Edison y el lenguaje de “Machine Learning” llamado “R”

Esperamos detallar más aun el proceso en próximas entregas. Por lo pronto les dejamos con un tutorial de Sparkfun sobre cómo instalar UBULINUX, una versión de LINUX para IoT basada en DEBIAN en el Edison. La ventaja de esto es que se puede usar el sistema de paquetes APT-GET para instalar el lenguaje “R”

https://learn.sparkfun.com/tutorials/loading-debian-ubilinux-on-the-edison

Pese a que los desarrolladores de UBILINUX se lamentan de no tener soporte suficiente para esta herramienta; creo que vale la pena probar y ayudar un poco a generar ese ecosistema.

___fadd2efe-349e-4ec3-b03e-b6fbd6b6ebfe-imageId=0a6ed59a-7a19-4839-b801-9691e0c0ae4a (1)

Intel Joule – Primeros Pasos

20 Ene , 2017,
Jose Nunez
, , ,
No Comments

___fadd2efe-349e-4ec3-b03e-b6fbd6b6ebfe-imageId=0a6ed59a-7a19-4839-b801-9691e0c0ae4a (1)En nuestra publicación anterior hicimos un breve recorrido sobre las especificaciones del Joule de Intel, una tarjeta de desarrollo pensada para adentrarnos en el mundo de las aplicaciones de alta demanda computacional en dispositivos pequeños, ya sea vestibles o de tamaño reducido; especialmente sistemas de análisis de imágenes 3D de cámaras Intel Real Sense.

En esta ocasión iremos paso a paso por los tutoriales de Intel sobre cómo empezar a desarrollar soluciones en esta magnífica plataforma.

Para esto nos basaremos en la guía de usuario suministrada por el fabricante mientras tratamos de resumir y enfocarnos en los aspectos más importantes.


1 Materiales Requeridos

Comencemos por los diferentes materiales que serán necesarios para nuestro primera incursión funcional.

  1. Una Plataforma de Desarrollo Intel Joule 570x (enlace)
  2. Un disipador de calor (suministrado con la plataforma)
  3. Fuente de poder 12V, 3A (En este tutorial nosotros usamos una de 12V, 2A) conector de barril de 5mm con centro positivo de 2.1mm
  4. Cable micro-USB tipo B para la comunicación serial con el dispositivo (cable no incluido en el kit). Es el tipo de cable con que actualmente cargamos los telefonos Andriod.
  5. Teclado USB. Nosotros utilizamos un teclado inalámbrico con ratón marca Microsoft sin mayor problema.
  6. Cable HDMI macho estándar a macho conector micro
  7. USB Hub: Opcionalmente un concentrador USB (hub) con suministro eléctrico independiente (en caso de querer conectar dispositivos que demanden más de 900mA)
  8. Bluetooth: Opcionalmente también se pueden conectar dispositivos de teclado y ratón vía Bluetooth.
  9. Computador Anfitrión: Se necesitará un computador para programar el Joule.
    • Para actualizar el BIOS del Joule será necesario un computador anfitrión con sistema operativo Windows 8, 8.1 o Windows 10.
    • El sistema operativo que se vaya a utilizar en el Joule introduce algunas dependencias en el computador anfitrión que se use para programarlo. Así, si se utiliza LINUX de referencia que provee Intel o si se utiliza Ubuntu para IoT, se puede usar un computador anfitrión con sistema operativo Windows, Linux o Mac. Pero si el sistema operativo del Joule es Windows IoT, el computador anfitrión deberá estar equipado con sistema operativo Windows 10 y demás especificaciones de Microsoft descritas acá.

2 Ambientes de Desarrollo de Intel

El Intel Joule se puede programar de muy diversas formas. Intel recomienda usar alguno de los siguientes sistemas para programara la plataforma:

  1. Intel System Studio IoT Edition para Windows, Mac, o Linux en  caso de querer programar la plataforma mediante lenguajes como C/C++ o Java. Nótese Intel System Studio para Linux requiere Ubuntu 16.04 LTS como sistema operativo anfitrión en 64bit.
  2. Intel XDK tambien para Windows, Mac o Linux, en caso de querer programar la plataforma con NodeJS

(!) En esta publicación utilizaremos Intel XDK tanto en un anfitrión Linux (Mint 18) como en Windows 10.


3 Requisitos para Instalación del Sistema Operativo del Joule

La plataforma Intel Joule trae de fábrica una versión optimizada del sistema operativo LINUX. Se recomienda actualizarla ya sea a la imagen más reciente o a alguna versión de Ubuntu Desktop o de Windows for IoT.

Dicha actualización requiere:

  1. Flash Drive de tipo USB 3.0 con 16GB de capacidad conectado a un USB HUB con alimentación independiente. Puede ser USB 2.0 pero la transferecia de datos tendrá una tardanza notoria.
  2. Tarjeta MicroSD de 16GB (puede usarse un Flash Drive adicional si se trata del LINUX de referencia)
  3. El computador anfitrión deberá tener capacidad de leer la tarjeta del punto #2 anterior.
  4. Instrucciones (En inglés) para la actualización del sistema operativo

4 Ensamblando la Plataforma de Desarrollo

Este enlace provee instrucciones muy completas y sencillas sobre cómo preparar / ensamblar los diferentes elementos de la plataforma desarrollo. Se incluyen en dicho enlace pasos importantes como:

  1. Instalación del disipador de calor
  2. Antenas
  3. Instalación de espaciadores

5 Sobre el sistema operativo de la plataforma

En este enlace se describe en detalle las principales opciones de sistema operativo las cuales incluyen:

  1. Ubuntu Desktop 16.04 LTS
  2. Ubuntu Core 16.04 LTS
  3. Windows 10 IoT Edition
  4. Linux de referencia para IoT

6. Actualizando el BIOS

Un primer paso importante en el uso de Joule consiste en actualizar el BIOS. Es el software que orquesta ya carga del sistema operativo y otras funciones de entrada/salida.

El procedimiento es realmente sencillo, nos ha tomado unos 20 minutos en realizarlo. Se describe en este enlace:

https://software.intel.com/en-us/flashing-the-bios-on-joule


7. ¿Qué sigue?

En nuestra siguiente entrega estaremos explorando la instalación de Windows 10 for IoT en el Joule.

IMG_20170113_000211

Intel Joule 570x Developer Kit

13 Ene , 2017,
Jose Nunez
,
No Comments

IMG_20170113_000514Finalmente llegó el momento de evaluar el Intel Joule. Una plataforma de amplio poder computacional y de un tamaño sumamente reducido.

Tal y como se menciona en su sitio de arranque (getting started with Intel Joule), se trata de un módulo de alto desempeño tanto en poder de computación como en procesamiento de gráficos y memoria. Está orientado a la innovación en aplicaciones de visión computarizada, robótica, drones y otras aplicaciones de alta capacidad de cómputo.

En nuestro caso, estaremos probando el kit de desarrollo Joule 570X cuyas principales características incluyen:

  • Procesador Intel Atom de cuatro núcleos a 1.7 GHz (base) hasta 2.4GHz en modo turbo. (Dos hilos por núcleo)
  • Plataforma de direccionamiento de 64bit
  • Procesador gráfico Intel de alta definición HDMI 1.4b a 450MHz (base) hasta 650MHz (modo turbo)
    • Puerto Micro-HDMI
  • Memoria RAM de 4GB con velocidad de 25.6GB/s
  • Almacenamiento de 16GB en Flash eMMC
  • Puertos USB 3.0
  • 3.5 Puertos UART
  • Conectividad WiFi y Bluetooth
  • 8 líneas dedicadas de entrada/salida de propósito general (GPIO) + 48 pines re-mapeables
  • 4 Puertos PWM
  • 1 Puerto SDIO para tarjeta SD
  • Reloj de Tiempo Real (RTC)
  • Alimentación de 12V 3A (fuente no incuida en el kit de desarrollo)
    • La documentación sugiere rango de operación de 4V a 20v *
  • Sistemas Operativos Sugeridos: Linux de referencia, Ubuntu IoT, Windows IoT
  • 7 Interfaces I2C en modo MASTER
  • Optimizado para interactuar con cámaras 3D tecnología Real Sense

Comparativamente se puede analizar el Intel Joule en contraste con el Intel Edison donde se destacan las siguientes diferencias:

  1. Más de 6X adicionales de poder de procesamiento: El Edison tiene un procesador que corre a 500MHz en contraste con 1.7GHz del Joule
  2. 4X más de memoria RAM: El Edison tiene RAM de 1GB DDR3 mientras que el Joule cuenta con 4GB LPDDR4
  3. 4X más de capacidad de de almacenamiento: El Edison provee 4GB de capacidad de almacenamiento, mientras el Joule provee 16GB ambos en tecnología eMMC Flash
  4. WiFi Mejorado: El Edison incluye conectividad WiFi para bandas de 2.4 y 5 GHz, mientras que el Joule incluye WiFi 802.11ac con MIMO.
  5. Capacidad de Video: El Intel Joule incluye controlador de video y salida de video Intel HD, mientras que el Edison no tiene salida de video integrada.
  6. Dimensiones: El Intel Joule mide 48X24x3.5mm ligeramente más grande que el Edison que mide 35.5x25x2.9mm
  7. GPIO: Más de 4X en puertos GPIO disponibles.

En nuestra próxima entrega estaremos compartndo nuestras pruebas prácticas sobre el Intel Joule.

Cabe mencionar que en nuestra prueba inicial (boot up) usamos una fuente de poder de 12V 1A. Tratamos con una de 5V 2A, pero no fue suficiente

IMG_20161206_202348

Comenzando con Intel Galileo

7 Dic , 2016,
Jose Nunez
, , , , , ,
No Comments

IMG_20161206_202348Tomando en cuenta una pequeña comunidad que hay acá en C.R. sobre Intel Galileo GEN2, acá les presentamos un pequeño resumen introductorio.

La línea Galileo de Intel parece estar más orientada a la parte didáctica de microcontroladores que funcionan con ARDUINO mezclada con Micro-computadores que corren LINUX.

Enlace con Especificaciones

Para “iniciar” con este dispositivo no se necesita mayor cosa, solo un cable de tipo USB-a-microUSB (~$6) para programarlo mediante el ambiente ARDUINO IDE. Es el mismo tipo de cable que se usa para cargar una mayoría de teléfonos Android desde una PC.

Hay un tutorial en Inglés acá: https://software.intel.com/en-us/get-started-galileo-windows

Para sacarle mayor provecho se recomienda tener lo siguiente:
• Tarjeta Micro SD de 2GB a 32GB (crcibernetica ~$8) Para instalar una versión LINUX personalizada
• Cable de tipo “6-pin Serial to Type A USB cable (FTDI cable # TTL-232R-3V3 is recommended ($20 en Amazon)” o interfaz USB/SERIAL/FTDI tipo FOCA 2.2 ($ 11 en crcibernetica) Para acceder a la consola LINUX
• Tarjeta WiFi para laptop (Centrino N135 o Centrino 6205 ~$11-$14 en Amazon) para darle conectividad WiFi. Ambas tarjetas requieren este accesorio.

La presentación estándar de Intel Galileo GEN2 incluye la fuente de poder.

El dispositivo puede ser programado con ARDUINO IDE o mediante la plataforma LINUX que corre.

IMG_20161129_172340

FOCA V2.2 by ITEAD STUDIO + GALILEO GEN2 de Intel

30 Nov , 2016,
Jose Nunez
, , , , ,
No Comments

El dispositivo FOCA v.2.2 que se consigue en amazon y en crcibernetica.com es un adaptador conocido como “FTDI” para puerto USB que permite conectar una PC a un dispositivo por puerto serial tx/rx ya sea en voltajes 3.3V o 5V. Sumanente versatil.

Uno de los principales retos para usar este dispositivo es encontrar el controlador adecuado para la PC a la que se va a conectar.

En nuestro caso, para Windows 10, pudimos utilizar un controlador del fabricante silabs que se puede descargar en este enlace:

http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx#windows

http://www.silabs.com/Support%20Documents/Software/CP210x_Windows_Drivers.zip

Una vez que hemos instalado el controlador (usando el Administrador de Dispositivos y la opción de “Actualizar Controlador”), pudimos probarlo exitosamente conectándolo al puerto FTDI de un Intel Galileo GEN2 para acceder a la terminal Linux del Galileo. Seguidamente les mostramos el “pinout” o distribución del cableado. Para la prueba usamos putty (de putty.org) a una velocidad de 115200 baudios.

GALILEO GEN2                 FOCA V2.2
   1 (BLK) <===  BLACK  ===> GND
   2 (RTS)  | NO CONECTAR |
   3       <===    RED  ===> VCCIO (Puede dejarse desconectado)
   4 (RXI) <=== PURPLE  ===> TXD
   5 (TXO) <===   GRAY  ===> RXD
   6 (CTS) <===  BROWN  ===> DTR

IMG_20161129_172340

 

 

curie

Intel Curie – Punto de Partida (Documento Cambiante)

20 Ago , 2016,
Jose Nunez
one comments

Acá algunos enlaces útiles para desarrollar con Intel Curie:

 

 

 

IMG_20160713_154251

Robot de dos llantas y un micro-controlador S4A-EDU

13 Jul , 2016,
Jose Nunez
, , , ,
one comments

Descripción

En este experimento vamos a montar un pequeño robot de dos ruedas que controla su trayectoria mediante la diferencia de velocidad de cada rueda. Para esto utilizaremos un micro-controlador denominado S4A-EDU (Sketch 4 Arduino EDUCATION). El cual implementa la circuitería necesaria para controlar dos motores DC incluyendo la implementación de dos circuitos de “Puente H” que se utilizan para controlar la dirección en la que gira cada motor manipulando la polaridad a la que son expuestos.

Este es un experimento resumido que require un nivel de conocimiento medio en Arduino y Electrónica.


Referencias Externas

  1. Manual Introductorio del Microcontrolador (en inglés): S4AIntroduction
  2. Sketch for Arduino: http://s4a.cat

Advertencia y Condiciones de Uso

(!) Antes de seguir estas instrucciones asegúrese de entender las Condiciones de Uso de nuestro sitio.


Materiales


Pasos Resumidos

A. Montaje y Prueba Inicial

  1. Ensamble el chasis con las ruedas y los motores (siguiendo las instrucciones del fabricante)
  2. Agregue  el microcontrolador S4A-EDU al chasis
  3. Asegúrese de que el interruptor on/off del micro-controlador S4A-EDU está colocado en la posición de OFF
  4. Conecte el micro-controlador S4A-EDU al computador usando un cable de USB a Mini-USB
  5. Windows:
    1. Instale el “controlador de windows” para el puerto USB del microcontrolador CP210x (nosotros lo descargamos de este enlace)
  6. Arduino IDE:
    1. Instale y seleccione la tarjeta “Amtel atmega328p xplained mini“. La encontramos buscando “328p” en Tools > Boards > Boards Manager
    2. Configure  el puerto correspondiente. Para nuestro caso aparece  en el “Device Manager” como “Silicon Labs CP210x USB to UART Bridge en COMxx
    3. Abra el ejemplo  “Blink” (File > Examples > 01.Basics > Blink) y subirlo al microcontrolador.
    4. En este punto la luz (azul en nuestro caso) del S4A-EDU parpadea cada segundo. Nótese que el interruptor on/off del micro-controlador está todavía en la posición OFF.
    5. (!) En este punto tenemos un chasis de robot con dos ruedas, con un micro-controlador S4A-EDU montado sobre el chasis el cual podemos programar utilizando el ARDUINO IDE.

B. Trabajando en los motores

En esta etapa vamos a conectar los motores al micro-controlador S4A-EDU y vamos a utilizar un programa básico para hacer que el robot “gire sobre su propio eje”. Esto es, hacer que una de las llantas se mueva en una dirección y la otra llanta en la dirección opuesta, ambas a la misma velocidad.

  1. Conexiones:
    1. Asegúrese de que el interruptor on/off del micro-controlador S4A-EDU está colocado en la posición de OFF
    2. Conecte el positivo de cada motor (cable rojo) y el negativo (cable negro) de cada motor según se indica en la parte inferior derecha de la siguente imagen.robot_rotate
    3. En nuestro caso, vamos a alimentar el sistema mediante una batería LIPO 3.7V de 2500MAh.  (!) Nótese que el circuito funciona con 6-9V según las especificaciones. Nosotros en este experimento usamos un convertidor de 3V a 5V el cual parece funcionar perfectamente.
  2. Arduino IDE:
    1. Abra un nuevo programa en el ARDUINO IDE, y pegue en él el código de este archivo: https://github.com/janunezc/robotics/blob/master/_02_s4a_edu_rotate/_02_s4a_edu_rotate.ino
    2. Cárguelo al S4A EDU
  3. Funcionamiento del Programa:
    1. En la función “setup()” se definen los pines del controlador utilizados para manipular los motores junto con el pin 13 que se utiliza para ilumnar el LED integrado en el micro-controlador S4A-EDU; que nos va a servir de medio para ver la ejecución del programa.
    2. Una vez definidos los pines de salida se hace una llamada a la función doBlink la cual hace parpadear rápidamente el LED integrado como indicativo del que el Setup está completado.
    3. Seguidamente se configuran la velocidad y dirección de cada motor. Es en este momento que el robot comienza a girar.
    4. La función loop() permanece vacía en este caso.
    5. La función setMotor() se encarga de manipular los pines de velocidad y dirección para el motor solicitado.
    6. La función doBlink() se encarga de hacer parpadear el LED del micro-controlador un numero de veces determinado con una espera entre transiciones tambien determinado en los parámetros.
  4. (!) En este punto. Al desconectar el cable USB del micro-controlador S4A-EDU y poner el interruptor a la posición ON, el sistema parpadea 10 veces el LED indicador y comienza a girar sobre su propio eje.

Agradecimientos

Queremos expresar nuestro agradecimiento a nuestro colega Gerardo Mora y al estudiante Jean Paul Jimenez por acompañarnos en esta aventura de descubrir el funcionamiento de los diferentes componentes de este robot.