Intel Realsense Robotic Kit con Upboard + ROS

IMG_20170216_190038Recientemente publicamos un primer artículo sobre el kit de robótica de Intel que trae una cámara Real Sense y un Upboard.

Aunque esta segunda entrega es bastante corta, esperamos que abra las perspectivas de nuestros lectores sobre lo que se puede llegar a hacer con uno de estos kits y los sistemas de robótica ROS y las facilidades que tiene para el manejo de cámaras Real Sense.

Paso 1 (30 min)

Comenzaremos diciendo que instalar Ubuntu y ROS en el Upboard es una tarea súperfacil siguiendo las instrucciones en este enlace:

https://software.intel.com/realsense/robotic-devkit-quickstart

Esto incluye

  1. Una revisión de materiales incluidos en el kit
    (!) Van a necesitar un cable HDMI estándar para conectar el video del UP Board a un monitor, un teclado, un ratón y un adaptador WIFI USB.
  2. La descarga de Ubuntu 16.04.1 LTS
    (!) Hoy (FEB18) gracias a las pruebas que está haciendo el profesor Tomás de Camino, vimos que ya la versión de Ubuntu 16.04.1 no está disponible en el enlace oficial que trae la guía de quick start de Intel, sino que fue reemplazada por la 16.04.2. Aunque en la buena teoría deben funcionar igual, en caso de experimientar algun problema con el setup acá les dejamos el enlace oficial a esa versión: 
    http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso
  3. La creación de un USB Stick de instalación
  4. La instalación del Ubuntu en el UP Board
  5. La actualización del sistema operativo incluyendo el KERNEL de linux optimizado para el Upboard
    (!) En este paso puede que se necesite configurar los servidores APT de Ubuntu para que use los servidores en Estados Unidos (no en Costa Rica) ya que en CR no están los paquetes de ROS. Para esto se abre el menú de búsqueda de Ubuntu y se digita “Software Updates” y en la casilla “Download From” se selecciona “Server from United States”image
  6. La actualización del software de Real Sense
  7. La instalación del sistema ROS en su versión Kinetic
    (!) ROS es un “meta-sistema operativo” de código abierto para robots, desarrollado por la fundación de robótica de código abierto. Para aprender más sobre ROS pueden seguir este enlace http://wiki.ros.org/ROS/Introduction
  8. Ejecución de un “Nodelet” de ROS para la cámara Realsense R200
  9. La ejecución del programa “RVIZ” para visualización 3D
  10. ¡a celebrar carajo!

Si, eso es todo por ahora.

Intel UPBoard y el kit de robótica Real Sense

69c570f4-7821-42da-a8b7-c0d23bf1b202Esta semana nuestra investigación dio un giro inesperado al encontrarnos por primera vez con una pequeña maravilla que desconocíamos: el kit de robótica Real Sense de Intel, que está basado en un dispositivo (diríamos “compentencia” del Raspberry PI) denominado UP Board.

[Actualización 2/20/2017] El UP Board es un dispositivo fabricado por la empresa AAEON que usa tecnología Intel y está optimizado para las cámaras Real Sense de Intel.

Afortunadamente pudimos conseguir uno de estos kits en la tienda de Intel antes de que se agotaran. Esperamos que pronto estén de vuelta.

El kit que se vende por aprox. $350 más gastos de envío e impuestos, contiene una tarjeta Up Board que prácitcamente del mismo tamaño que una Raspberry PI 3, con 32GB de storage eMMC, 4 GB de memoria RAM de alta velocidad y un procesador Intel Atom de 4 núcleos 1.92 GHz y GPIO de 40 pines y fuente de poder (5V 4A). (Especificación completa)

Siendo que la cámara Real Sense se consigue por $170, la tarjeta UP Board con 4GB RAM, 32GB Storage, nos sale costando aproximadamente $180, más un dongle wifi que necesitamos para conectarlo a Internet ($20)

Pero no nos confundamos; pusimos “competencia” entre comillas por que ¡esta cosa realmente vuela! Pienso que el precio está justificado por el desempeño que presenta y la facilidad con que lo pudimos poner en operación.

Viene optimizado y preparado para correr Ubuntu Linux (tal cual se descarga del sitio de Cannonical), trae un USB3.0  optimizado para la cámara Real Sense R200  que conforma el kit y otros cuatro puertos USB 2.0 más.

Mi experiencia echando a andar este pequeño monstruo fue realmente placentera. Fue cuestión de preparar un USB Stick con una imagen de Ubuntu, bootearlo en el dispositivo e instalar.

Luego de eso instalamos algunas librerías muy interesantes que estaremos detallando pronto en nuestra siguiente entrega, tales como ROS (robot operating system), OpenCV Apps, Optimizaciones del Kernel de Linux para el upboard, etc.

A este punto pudimos instalar todas las librerías necesarias, e incluso instalar y correr Netbeans 8.2 sin ningun impacto en el desempeño del dispositivo.

 

 

Robot de dos llantas + acelerómetro/giroscópio > Una experiencia de Aprendizaje

robot-willieResumen

Les confieso que esta es mi primera publicación; por pura insistencia de mi editor estamos acá escribiendo. En esta primera entrada discutiremos mi experiencia en Intel en la investigación de cómo programar un robot de dos ruedas mediante diversos micro-c0ntroladores, incluyendo el S4A-EDU, Arduino UNO, Aruduino 101 y Sparkfun Thing.

Detalle

A principios de este año 2017. tuve la bendición de poder pasar unos días en Intel en una experiencia “ad-hoc” de aprendizaje de tecnología, investiación, desarrollo, auspiciada por el Centro de Innovación de Intel y por José Núñez.

En esta experiencia pudimos explorar las diferentes reacciones que que tenia el robot cuando instalábamos diferentes programas (en ARDUINO IDE) con  diferente controladores para realizar rutinas como por ejemplo: movilidad hacia adelante y atrás, movimientos con giros con duración específica y también pudimos ver funcionar el acelerometro y giroscópio del chip Intel Curie.

En el fondo nos concentramos en tratar de entender cómo hacer que se mueva el robot (descrito acá) en distintas direcciones y cómo hacer que este pueda tener un movimiento rectilineo preciso, controlado utilizando el giroscopipo disponible en el Intel Curie.

Experiencia con el Acelerómetro de Intel Curie

Comenzamos aprendiendo sobre las diferentes funciones del Intel Curie. Para esto realizamos diversos experimentos descritos en este artículo de Jose Nunez acá en CostaRicaMakers.com.

La verdad me resultó sencillo de utilizar y muy útil para aprender a hacer las lecturas de los diferentes sensores (acelerómetro y giroscópio) y la utilización de las funciones de Blue Tooth Low Energy (BLE)

Experiencia con el Robot de dos llantas y el controlador S4-EDU

La verdad es que comencé con esta experiencia con altas expectativas de lo que podría aprender y hacer. Al principio el primer problema que enfrenté fue aprender un poco de programación, creo que tengo un largo camino por recorrer en esta área.

El robot en sí permite realizar movimientos de manera muy versatil gracias a su sistema de dos llantas independientes sobre las que podemos controlar dirección individual y velocidad.

Como mencioné antes fuimos probando diversos controladores, comenzando por el original del kit del robot (el S4A-EDU) que cuenta con un circuito muy interesante denominado “Puente H” (H-Bridge) que nos permite controlar la dirección y velocidad de los motores.

Una vez que pudimos hacerlo moverse usando el controlador original (S4A-EDU) nos dimos a la tarea de reemplazar dicho controlador (parcialmente) con un ARDUINO101 que como dijimos tiene sensores de movimiento (acelerómetro y giroscopio). Para esto pudimos facilmente desconectar el puente H del S4A-EDU y conectarlo al ARDUINO 101.

Como dije antes, el principal reto que enfrentamos fue la programación. Realizamos diferentes tipos de programa usando el ambiente integrado de desarrollo (IDE) de ARDUINO.

Una vez controlado por el ARDUINO 101 para realizar los movimientos básicos, el siguiente reto era comenzar a utilizar el giroscopio para leer cuanto se desviaba hacia un lado u otro el robot al caminar en una misma dirección. Para poder extraer los datos (que son muchos) de las lecturas del giroscopio, tratamos inicialmente de subirlos por WiFi a un servidor en Internet. Pare este fin introducimos un controlador más: el SPARKFUN THING.

La programación del SPARKFUN THING es algo “truculenta” ya que requiere una interfase serial para conectar la laptop donde uno escribe el programa y subirla al micro-controlador. Intentamos con un cable tipo FTDI, pero no tuvimos suerte. En resumen no funcionó por que el cable que teníamos no cuenta con línea DTR… (eso me queda pendiente de entenderlo mejor). Al día siguiente conseguimos otra interfase denomiada “FOCA V1.2” la cual permite comunicación serial con diversas opciones, con y sin línea DTR, a diferentes voltajes (3V, 5V) etc.

Ahora bien, subir datos por via WiFi a un servidor en Internet, el tiempo minimo que toma son 3 o 4 segundos… y el giroscopio generaba datos cada 200ms o menos… o sea, no nos servía la opción del WiFi… fue entonces cuando decidimos cambiar la solución. En vez de guardar los datos en Internet nos avocamos a graficarlos en mi celular usando una conexion Bluetooth Low Energy (del ARUDINO 101). Para esto fue necesario instalar una app en mi celular denominada nRF Toolbox descrita en el artículo mencionado sobre ARDUINO 101.

En este punto logramos que el robot se moviera en una misma dirección durante dos segundos y graficar durante ese tiempo las lecturas del giroscópio cada 200ms.

Control de Velocidad

Aprendí que la velocidad del robot se puede controlar mediante un método que se llama PWM (Pulse Width Modulation) y la idea es utilizar ese principio para ajustar la velocidad de cada rueda para compensar micro-desviaciones del movimiento rectilineo que queriamos lograr. Desafortunadamente no nos dio tiempo de implementar esa parte correctiva.

Conceptos Relacionados

Quiero listar acá algiunos conceptos que me parece importante profundizar en el futuro para mi propio aprendizaje en el área de robótica, tecnología y mecatrónica:

  • Variables y Constantes
  • Funciones y Métodos
  • Pasos e Instrucciones
  • Condicionales
  • Vibración
  • Frecuencia
  • Ancho de Pulso
  • Voltaje
  • Corriente/Amperaje

Agradecimientos

Quiero agradecer a el Señor Jose Núñez por permitirme esta oportunidad de estar en Intel aprendiendo mediante estos experimentos. Sinceramente me ha servido de mucho, tanto para mis estudios como para mi futuro.

Intel Joule 570x Developer Kit

IMG_20170113_000514Finalmente llegó el momento de evaluar el Intel Joule. Una plataforma de amplio poder computacional y de un tamaño sumamente reducido.

Tal y como se menciona en su sitio de arranque (getting started with Intel Joule), se trata de un módulo de alto desempeño tanto en poder de computación como en procesamiento de gráficos y memoria. Está orientado a la innovación en aplicaciones de visión computarizada, robótica, drones y otras aplicaciones de alta capacidad de cómputo.

En nuestro caso, estaremos probando el kit de desarrollo Joule 570X cuyas principales características incluyen:

  • Procesador Intel Atom de cuatro núcleos a 1.7 GHz (base) hasta 2.4GHz en modo turbo. (Dos hilos por núcleo)
  • Plataforma de direccionamiento de 64bit
  • Procesador gráfico Intel de alta definición HDMI 1.4b a 450MHz (base) hasta 650MHz (modo turbo)
    • Puerto Micro-HDMI
  • Memoria RAM de 4GB con velocidad de 25.6GB/s
  • Almacenamiento de 16GB en Flash eMMC
  • Puertos USB 3.0
  • 3.5 Puertos UART
  • Conectividad WiFi y Bluetooth
  • 8 líneas dedicadas de entrada/salida de propósito general (GPIO) + 48 pines re-mapeables
  • 4 Puertos PWM
  • 1 Puerto SDIO para tarjeta SD
  • Reloj de Tiempo Real (RTC)
  • Alimentación de 12V 3A (fuente no incuida en el kit de desarrollo)
    • La documentación sugiere rango de operación de 4V a 20v *
  • Sistemas Operativos Sugeridos: Linux de referencia, Ubuntu IoT, Windows IoT
  • 7 Interfaces I2C en modo MASTER
  • Optimizado para interactuar con cámaras 3D tecnología Real Sense

Comparativamente se puede analizar el Intel Joule en contraste con el Intel Edison donde se destacan las siguientes diferencias:

  1. Más de 6X adicionales de poder de procesamiento: El Edison tiene un procesador que corre a 500MHz en contraste con 1.7GHz del Joule
  2. 4X más de memoria RAM: El Edison tiene RAM de 1GB DDR3 mientras que el Joule cuenta con 4GB LPDDR4
  3. 4X más de capacidad de de almacenamiento: El Edison provee 4GB de capacidad de almacenamiento, mientras el Joule provee 16GB ambos en tecnología eMMC Flash
  4. WiFi Mejorado: El Edison incluye conectividad WiFi para bandas de 2.4 y 5 GHz, mientras que el Joule incluye WiFi 802.11ac con MIMO.
  5. Capacidad de Video: El Intel Joule incluye controlador de video y salida de video Intel HD, mientras que el Edison no tiene salida de video integrada.
  6. Dimensiones: El Intel Joule mide 48X24x3.5mm ligeramente más grande que el Edison que mide 35.5x25x2.9mm
  7. GPIO: Más de 4X en puertos GPIO disponibles.

En nuestra próxima entrega estaremos compartndo nuestras pruebas prácticas sobre el Intel Joule.

Cabe mencionar que en nuestra prueba inicial (boot up) usamos una fuente de poder de 12V 1A. Tratamos con una de 5V 2A, pero no fue suficiente

Comenzando con Intel Galileo

IMG_20161206_202348Tomando en cuenta una pequeña comunidad que hay acá en C.R. sobre Intel Galileo GEN2, acá les presentamos un pequeño resumen introductorio.

La línea Galileo de Intel parece estar más orientada a la parte didáctica de microcontroladores que funcionan con ARDUINO mezclada con Micro-computadores que corren LINUX.

Enlace con Especificaciones

Para “iniciar” con este dispositivo no se necesita mayor cosa, solo un cable de tipo USB-a-microUSB (~$6) para programarlo mediante el ambiente ARDUINO IDE. Es el mismo tipo de cable que se usa para cargar una mayoría de teléfonos Android desde una PC.

Hay un tutorial en Inglés acá: https://software.intel.com/en-us/get-started-galileo-windows

Para sacarle mayor provecho se recomienda tener lo siguiente:
• Tarjeta Micro SD de 2GB a 32GB (crcibernetica ~$8) Para instalar una versión LINUX personalizada
• Cable de tipo “6-pin Serial to Type A USB cable (FTDI cable # TTL-232R-3V3 is recommended ($20 en Amazon)” o interfaz USB/SERIAL/FTDI tipo FOCA 2.2 ($ 11 en crcibernetica) Para acceder a la consola LINUX
• Tarjeta WiFi para laptop (Centrino N135 o Centrino 6205 ~$11-$14 en Amazon) para darle conectividad WiFi. Ambas tarjetas requieren este accesorio.

La presentación estándar de Intel Galileo GEN2 incluye la fuente de poder.

El dispositivo puede ser programado con ARDUINO IDE o mediante la plataforma LINUX que corre.